Monitoring Transthyretin Protein Aggregation using yTRAP

Sean Martin and Anita L. Manogaran
Department of Biological Sciences, Marquette University, Milwaukee, WI

Transthyretin Amyloidosis (ATTR)
Age Driven High Prevalence: 1 in 4 over the age of 80 are estimated to have disease

- Symptoms: hypotension, chronic wasting, \& muscle weakness
- Treatment: symptom management, but no cure
- Diagnosis: poor diagnosis tools, leading to common misdiagnosis as heart failure
- Cause: Transthyretin (TTR) protein aggregation

Biology of Transthyretin (TTR)

Currently, there are no drug treatments that target after
tetramer dissociation. My project works to create a
system to screen for drugs that reduce TTR aggregation.
yTRAP Assay
transcription

- TTR SynTA \& translation TTR SynTA

	transcription \& translation	No protein expressed (control)	Function: - No TTR
$E^{I T A P}$	transcription \& translation	TTR TAP	- TTR with long tag (184 AA)
$E^{[H A}$	transcription \& translation	TTR HA	- TTR with short tag (8AA)

Flow Cytometry Results
Does TTR-tag (TAP or HA) influence mNeonGreen expression?

Figure 1: Cells taken directly from the transformant plate show no difference in mNeonGreen fluorescence. Transformants were inoculated into liquid media and incubated for 2 hours for 3 strains (EV, TTR-TAP, TTR-HA). 1 trial of each sample is shown.

Figure 2: TTR-Tap tag at late log reduces mNeonGreen readout. 3 strains (EV, TTR-Tap, \& TTR-HA) were grown to various ODs as indicated and subjected to flow cytometry. 3 trials of each sample are shown.

