**Office:** Katharine Reed Cudahy Hall,
Room 361

**Phone:** (414) 288-5226

**E-mail: **peter.jones@marquette.edu

**Homepage**

- Calculus
- Mathematics for High School teachers
- Abstract Algebra
- Linear Algebra
- Foundations of mathematics

- Algebraic Theory of Semigroups
- Currently particularly interested in restriction semigroups

- Jones, Peter R.
*Varieties of P-restriction Semigroups*.*Communications in Algebra*42.4 (2013): 1811-1834. 10.1080/00927872.2012.749883 -
**Jones, Peter R.***The Semigroups B_2 and B_0 are Inherently Nonfinitely Based, as Restriction Semigroups*.*International Journal of Algebra and Computation*23.6 (2013): 1289-1335. 10.1142/S0218196713500264 **Jones, P.R**.,*On lattices of varieties of restriction semigroups,*Semigroup Forum, 2012, DOI: 10.1007/s00233-012-9439-6-
**Jones, Peter R.***A Common Framework for Restriction Semigroups and Regular *-Semigroups. Journal of Pure and Applied Algebra,*216 (2012), 618-632. **P. R. Jones**and K. H. Cheong.*Lower Semimodular Inverse Semigroups, II,**Communications in Algebra,*39 (2011), 955-971.**P. R. Jones**and K. H. Cheong.*Semidistributive Inverse Semigroups, II*,*Communications**in Algebra,*39 (2011), 972-991.